

Copernicus Institute of Sustainable Development

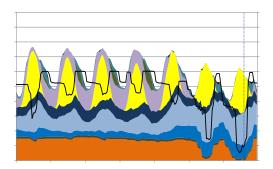
Least-cost options for integrating intermittent renewables

Anne Sjoerd Brouwer

22-01-2016

Introduction

- Stricter climate policies increasingly likely
- Power sector in a state of change
 - More intermittent renewables: wind and solar PV
 - Large CO₂ emission reductions: only a role for lowcarbon power plants
- Effect of intermittent renewables?
- Role of emerging technologies?
 - Carbon Capture and Storage (CCS)
 - Demand response
 - Increased interconnection capacity
 - Electricity storage


Structure

- 1. Background on intermittent RES (iRES)
- 2. Methods
- 3. Results
- 4. Conclusions

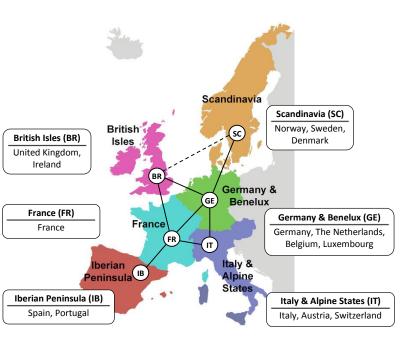
Background on intermittent RES

- Intermittent RES important component of low-carbon power systems
- Specific properties
 - 1. Intermittent
 - 2. Partly unpredictable
 - 3. Location specific

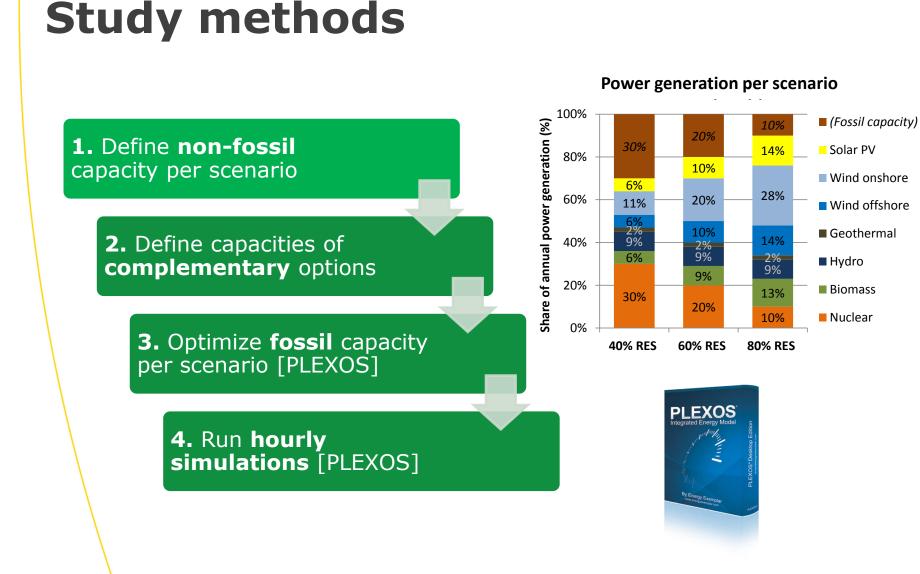
- Affect the whole power system
 - Operation
 - Economics

Methods

- Some technologies match better with intermittent renewables
- Goal of our research: identify which technologies may be part of a power system with:
 - High reliability (LOLP <0.1 day/year)
 - Low emissions (>96% reduction CO₂ emissions)
 - Low costs
- Power system with high shares of RES and iRES
- Consider a future power system...

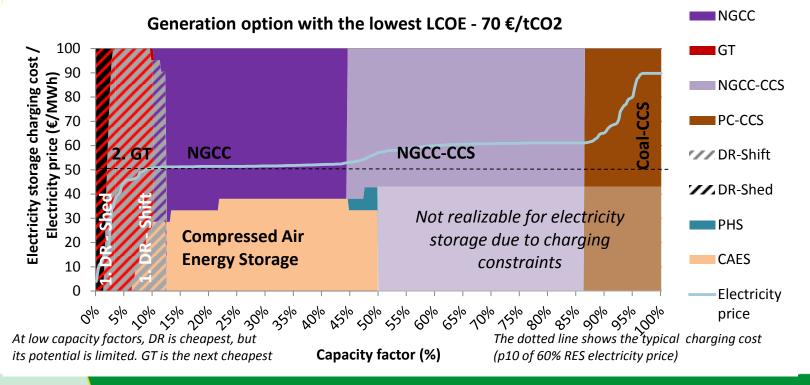


Methods

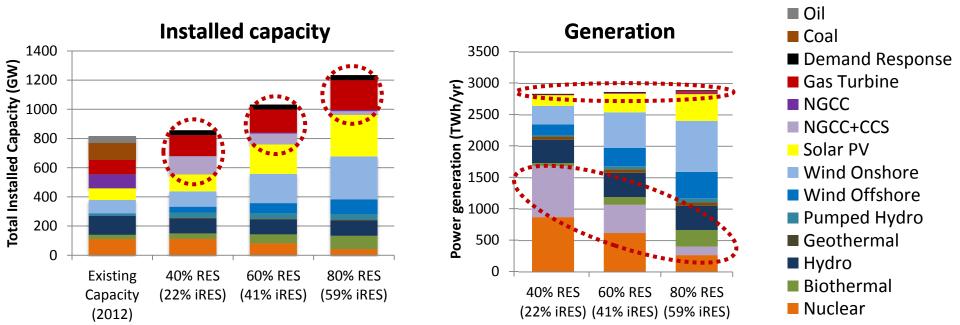

- ... in Europe in the year 2050
- Six-node power system simulated with PLEXOS
- Three scenarios evaluated

RES	40%	60%	80%
iRES	22%	41%	59%

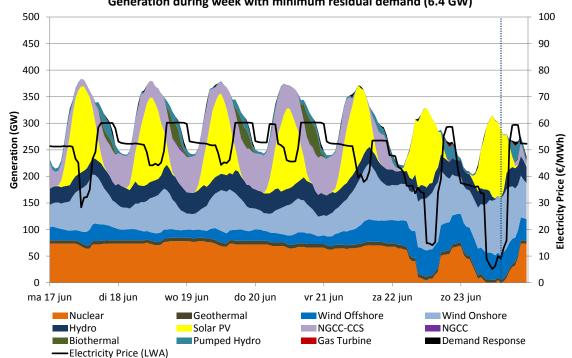
• Quantify system costs



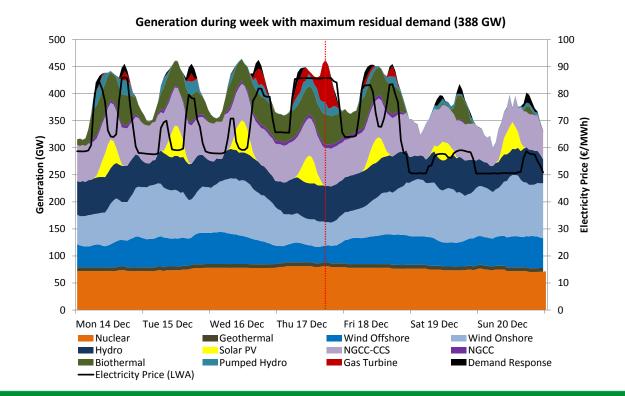
- Two aspects can reduce total system costs
 - Least-cost power generation
 - Efficient system operation
- First: what is the cheapest way to generate power in low-carbon power systems?



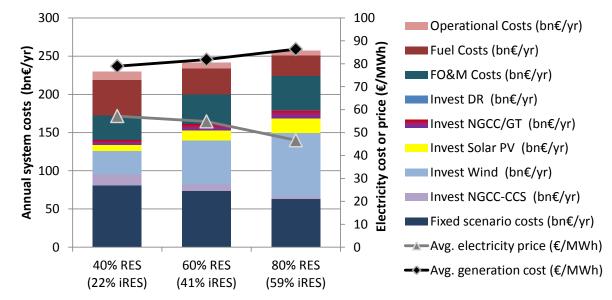
- Cheapest technology to generate low-carbon power?
 - Demand Response has limited potential
 - Storage can be attractive at low charging costs
 - Electricity storage charging costs are too high



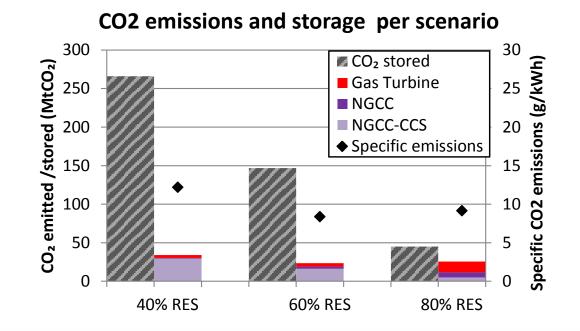
- Fossil capacity optimization: only natural gas capacity
 - Combined cycle with CCS
 - Gas turbines


NGCC-CCS generates power during the night in the summer ٠

Generation during week with minimum residual demand (6.4 GW)

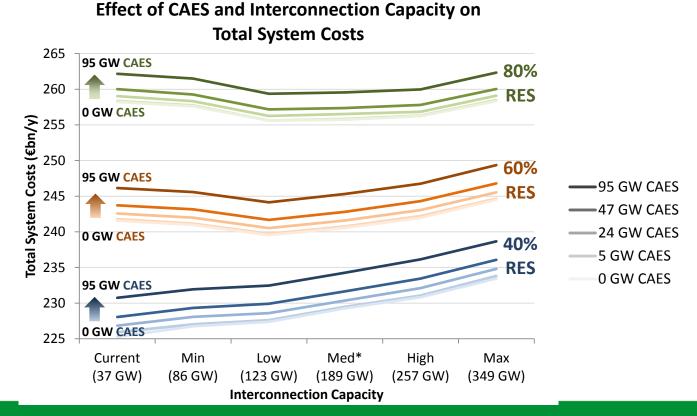


- NGCC-CCS baseload generation during winter time
- Gas turbines supply peak demand


- Effect on costs: intermittent renewables increase total system costs
 - 12% higher capital costs
 - 18% reduction in electricity price

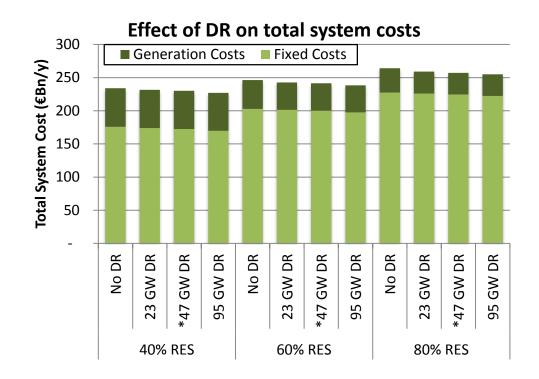
Total system costs per scenario

- CO₂ emission reduction target is met in all scenarios
 - Specific emissions of <13g/kWh correspond to a >96% reduction in CO₂ emissions


Results – system operation

- Which options can decrease system costs by improving "system efficiency"?
 - More efficient use of power plants
 - Less curtailment

Results – system operation


- Interconnects reduce costs up to a 'sweet spot'
- Storage is expensive

Results – system operation

- Demand response also reduces costs by 2-3%
 - Effect stronger at high RES penetration

Conclusions

- iRES affect the operation of power systems, but their impacts are manageable.
 - Larger reserves, effect on capacity factors of other generators
- Low-carbon power systems can be realized with various generation portfolios
 - iRES increase total system costs
 - Natural-gas fired generation important in all scenarios
 - DR & interconnections least-cost options
 - Electricity storage too expensive

The bigger picture

- Future power systems will become increasingly complex
 - New technologies
 - More decentralized generation
 - Cross-sectoral integration
 - More uncertainty for investors
- Necessary investments in power plants will not be made with the current energy-only market design
 - Business cases are unsound.
 - Generation adequacy may become a key issues of future power systems

Thank you for your attention

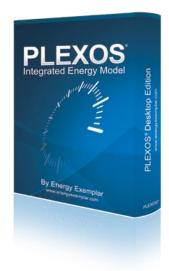
Any questions?

Anne Sjoerd Brouwer <u>a.s.brouwer@uu.nl</u>

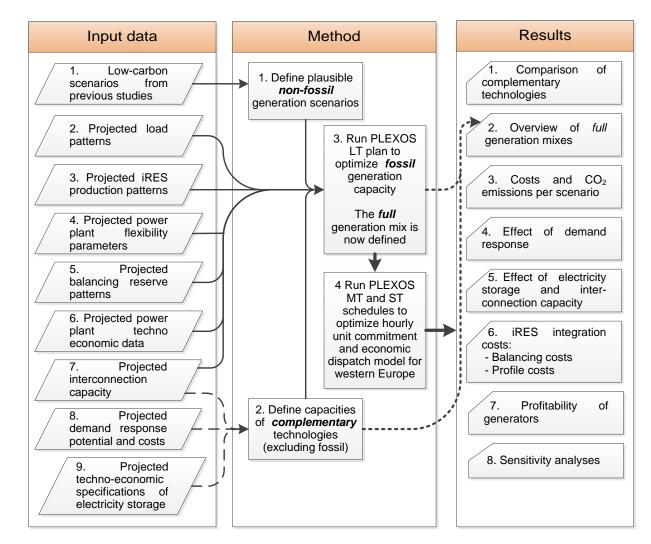
Will Zappa

w.g.zappa@uu.nl

Machteld van den Broek


m.a.vandenbroek@uu.nl

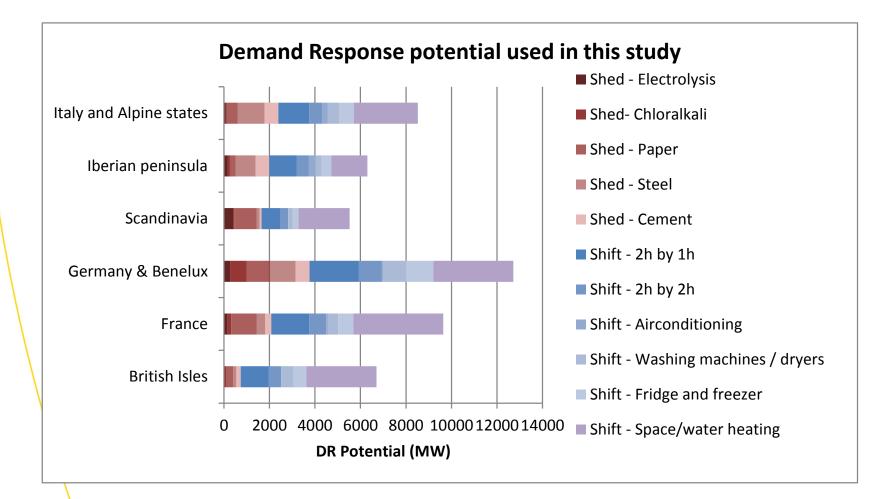
Anne Sjoerd Brouwer, Machteld van den Broek, William Zappa, Wim C. Turkenburg, André Faaij Least-cost options for integrating intermittent renewables in low-carbon power systems. Applied Energy 161, pp 48-74.(2016)


6. Supplementary slides

Overview of method

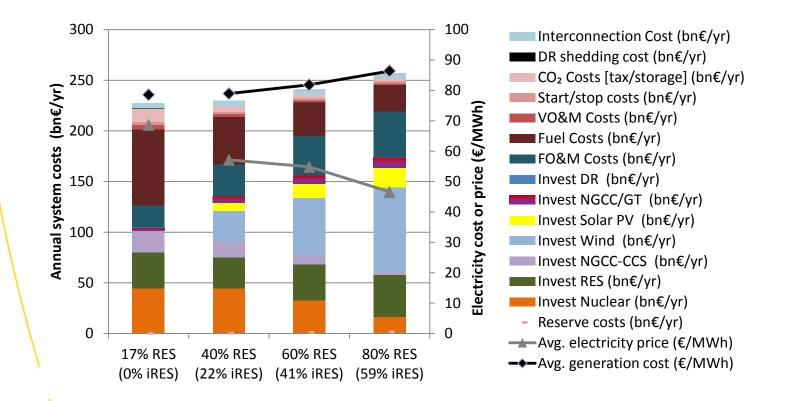
Key input parameters

€/GJ	Coal	Natu gas	iral (Uranium	Biomass	
Fuel price	1.7	6.5		1	7.2	
€/tCO ₂		Transpo	rt and s	storage		
CO_2 costs		13.5				
TWh/yr B		Scandi- navia	France	Ger- many+	Iberian pen.	Italy-
Load 4	15	368	602	811	358	525

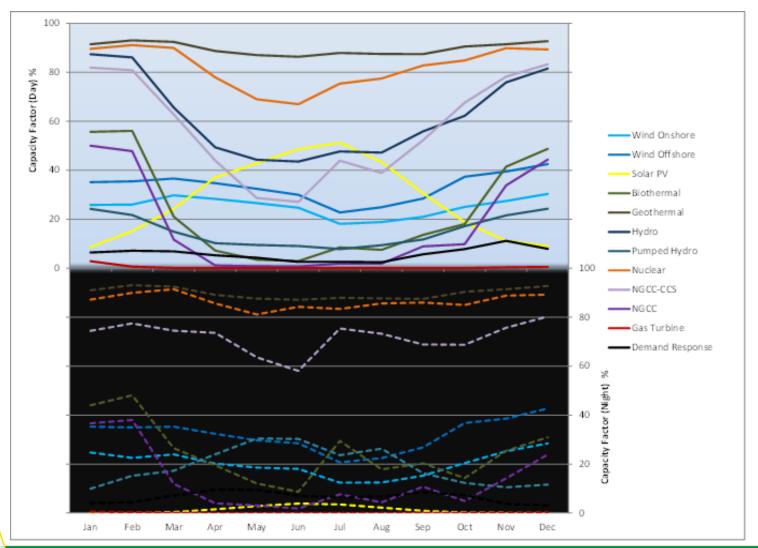


Input parameters of generation technologies

Generator	Investment (TCR, €/kW)	Fixed O&M (€/kW/yr)	Variable O&M (€/MWh)	Efficiency	Remarks
Nuclear	4841	103	1	33%	
PC-CCS	2847	33	5.6	41%	90% CO ₂ capture
NGCC-CCS	1349	15	2.1	56%	90% CO ₂ capture
NGCC	902	11	1.2	63%	
Biothermal	1949	37	3	45%	100% biomass fired
Geothermal	2657	44	0		
Hydro	3037	52	0		
Wind onshore	1402	37	0		CF: 22-26%
Wind offshore	2655	83	0		CF: 40-43%
Solar PV	700	17	0		CF: 11-21%
Gas turbine	438	10	0.8	42%	
Pumped hydro	2079	58	0.23	80%	80% round trip η
Demand resp.	3-100	1-11	0	100%	1-2 hrs of "storage"



Demand response potential



Detailed total system costs

Capacity factors per month

2. Define capacities of complementary options

3. Optimize fossil capacity per scenario [PLEXOS]

4. Run hourly simulations [PLEXOS]

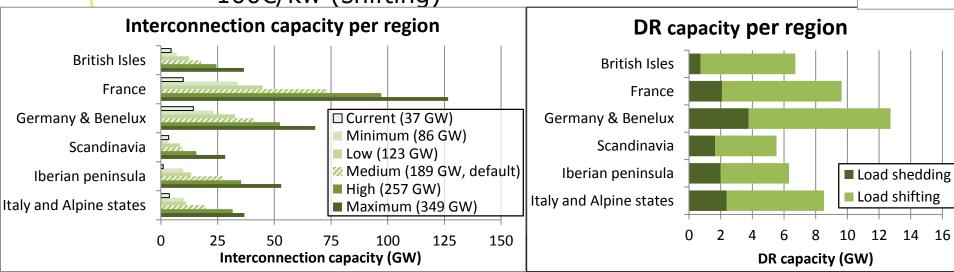
12,000

10,000

8,000 6,000

4,000 2,000

0

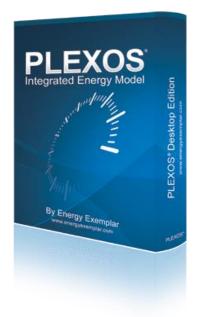

Investment costs (€/kW)

Storage capacity:

8 hours

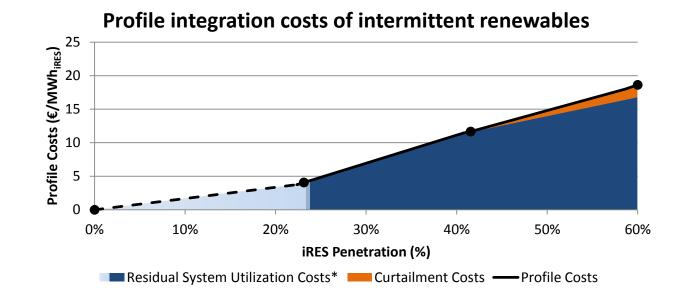
2. Methods

- Interconnection capacity
 - Deployment based on previous studies
 - Costs of 28 k€/MW/yr
- Demand response
 - Potential based on other studies (11 categories)
 - Crude costs of 200-5000 €/MWh (shedding) and 2-100€/kw (shifting)

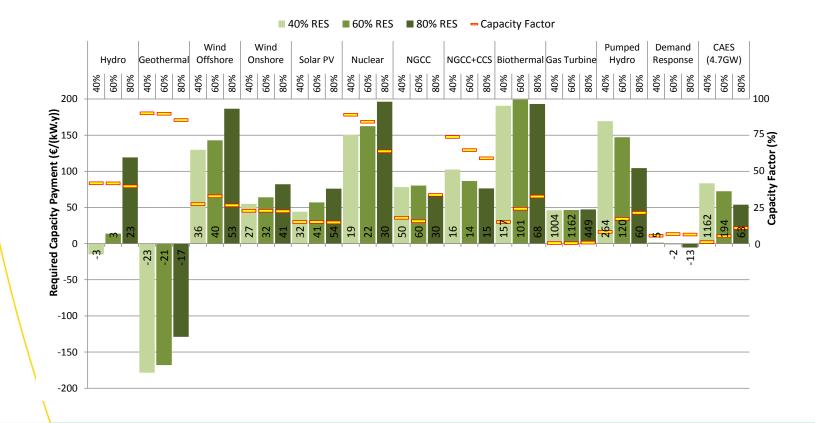

2. Methods

2. Define capacities of complementary options

3. Optimize fossil capacity per scenario [PLEXOS]


4. Run hourly simulations [PLEXOS]

- Two optimizations with PLEXOS
 - Power system simulation and optimization tool
- Optimization of fossil capacity
 - IEA projections of specifications
 - 6 generator types
- Hourly simulations
 - Chronological simulations with 8760 steps
 - Account for flexibility constraints
 - Auxiliary reserves also included
 - Curtailment of RES allowed



- Total system costs are also increased by the integration costs of intermittent RES:
 - Profile costs
 - Balancing costs, grid costs

(3. Results – economics)

(4. Sensitivities)

- Variations in input parameters are explored, as the input parameters determine the outcome of the study.
- Four tornado graphs depict the effect of variation in input parameters on:
 - Total system costs
 - Fuel use
 - Generation capacities
 - Electricity generation per generator type

(4. Sensitivities – key findings)

- Results are overall robust. Results are only considerably affected by:
 - High gas price (7.8 €/GJ) → shift of NGCC-CCS to PC-CCS
 - Cheaper biomass (5.5 €/GJ) → biomass early in merit order
 - Higher CO2 cap (180 Mt) \rightarrow shift of NGCC-CCS to NGCC
 - Lower investment costs of iRES \rightarrow lower system costs
- More flexibility in systems resulting from interconnections, DR or CAES leads to
 - More base-load generation
 - Less GT capacity being installed and used
- Investment costs of iRES are a key factor.
 - Reduction in iRES investment costs has a large impact
 - Overall iRES cost reduction of >31% required to make 80% RES the cheapest scenario

Total System Cost

60% RES Base = 241.3 €bn/y

*60% RES, Cap 45MT ,CAES 0% , Exch 189 GW, DSM 34 GW , NG 6.5 €/GJ, BIO 7.2 €/GJ

			■ 40% RES ■ 60% RES ■ 80% RES						Total System Cost (€bn/y)								
	21	.0 215	220) 22	25 23	30	235	240	24	5 2	50 2	55	20	50 2	265	270	2
5	0% DSM (0 GW)					234.0				246.1					264.0		
	50% DSM (17 GW)				231.	4			242	2.7				258.9			
DSM –	*100% DSM (34 GW)				230.0				241.3				257	1			
_	200% DSM (68 GW)			227	7.0		238.4					254	4.8				
	Gas 3.9 €/GJ	215.3			231	.9					250.9						
Sec. –	Gas 5.2 €/GJ		222.	3		23	5.3					253.6					
Fuel Prices	*Gas 6.5 €/GJ				230.0				241.3				257	1			
Fue –	Gas 7.8 €/GJ					234.1			24	3.3			257	7.5			
_	Bio 5.5 €/GJ			226	.6	23	5.3				250.7						
5	*45 MT				230.0				241.3				257	1			
Emission Cap	60 MT				229.1				241.3				256.3				
<u>в</u> О —	180 MT				230.4		2	41.3			249.2						
(e	*0% (0 GW)				230.0				241.3				257	1			
ange	1% (4.8 GW)				230.2				241.5				257	.3			
CAES Excha	5% (23.7 GW)				231.	1			242	.4			25	8.0			
CAES (Med Exchange) 	10% (47.6 GW)				23	2.4			2	43.6			2	58.8			
≥ -	20% (95.1 GW)					235.0				246.1				261.0)		
>	Cur (36.7 GW)			226.0)				242	.3				259.6			
acit	Min (86.4 GW)			22	7.5	(241.8	3				259.0			
Exchange Capacity (0% CAES)	Low (123 GW)			2	28.1		240).3					257.	0			
nge 0%0	*Med (189 GW)				230.0				241.3				257	.1			
((xcha	High (257 GW)				231	6			242	2.7			25	7.7			
	Max (349 GW)					234.2				245.3				259.8			
iRES Investment Costs	iRES -10%			226.3	1	234.3				246	.9						
	iRES -20%		222.	.3 22	7.2	23	6.6										
Investi Costs I	Solar PV 500€/kW			22	27.8	2	37.4				251.	5	i				
IRES –	Solar PV 1095€/kW					234.4					249.1					268.2	
	No Pumped Hydro				230.3		239.	6					256.4	-			
A	Iternative Demand Profile				231.	В				244.3				259.1			

4. Discussion – scope, assumptions

- This study only considers snapshots of possible future power systems in 2050. No consideration is given to the dynamic transition from the current system
- Starting points of this study are pre-set emission reduction and reliability targets.
- Heating (demand, generation, storage) is not included.
- No transmission constraints are simulated within regions
- Assumed properties of DR capacity
 - 49 GW of DR potential
 - Shedding costs in this study: 200-5000€/MWh
 - Shifting investment cost in this study: 2-100 €/kW

4. Discussion - caveats

- The scenario approach fixes 50-65% of the costs exogenously leaving less room for optimization. Thus systems are plausible, not necessarily optimum. This may be reflected in the costs.
- Capacity credits of iRES are fixed. This assumption:
 - Underestimates the benefits of interconnections (interconnectors can increase the capacity credit by spatial smoothing);
 - Underestimates the profile costs in the 80% RES scenario compared to the 40% RES scenario (capacity credits decrease with higher iRES capacity, requiring more firm capacity with low capacity factors).
- Significant uncertainties remain about the potential and costs of DR
- The model does not include specialized VOLL-values, or a detailed representation of super-peak generators (e.g. backup generators). These could improve the profitability of power plants by causing price spikes, which lead to big profits in a small amount of time.